Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Invest New Drugs ; 35(1): 11-25, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27783255

RESUMO

Background The neddylation pathway conjugates NEDD8 to cullin-RING ligases and controls the proteasomal degradation of specific proteins involved in essential cell processes. Pevonedistat (MLN4924) is a selective small molecule targeting the NEDD8-activating enzyme (NAE) and inhibits an early step in neddylation, resulting in DNA re-replication, cell cycle arrest and death. We investigated the anti-tumor potential of pevonedistat in preclinical models of melanoma. Methods Melanoma cell lines and patient-derived tumor xenografts (PDTX) treated with pevonedistat were assessed for viability/apoptosis and tumor growth, respectively, to identify sensitive/resistant models. Gene expression microarray and gene set enrichment analyses were performed in cell lines to determine the expression profiles and pathways of sensitivity/resistance. Pharmacodynamic changes in treated-PDTX were also characterized. Results Pevonedistat effectively inhibited cell viability (IC50 < 0.3 µM) and induced apoptosis in a subset of melanoma cell lines. Sensitive and resistant cell lines exhibited distinct gene expression profiles; sensitive models were enriched for genes involved in DNA repair, replication and cell cycle regulation, while immune response and cell adhesion pathways were upregulated in resistant models. Pevonedistat also reduced tumor growth in melanoma cell line xenografts and PDTX with variable responses. An accumulation of pevonedistat-NEDD8 adduct and CDT1 was observed in sensitive tumors consistent with its mechanism of action. Conclusions This study provided preclinical evidence that NAE inhibition by pevonedistat has anti-tumor activity in melanoma and supports the clinical benefits observed in recent Phase 1 trials of this drug in melanoma patients. Further investigations are warranted to develop rational combinations and determine predictive biomarkers of pevonedistat.


Assuntos
Antineoplásicos/farmacologia , Ciclopentanos/farmacologia , Melanoma/tratamento farmacológico , Pirimidinas/farmacologia , Enzimas Ativadoras de Ubiquitina/antagonistas & inibidores , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Melanoma/genética , Melanoma/metabolismo , Enzimas Ativadoras de Ubiquitina/metabolismo , Ubiquitinação/efeitos dos fármacos
2.
Mol Cancer Ther ; 14(2): 317-25, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25376610

RESUMO

The goal of this study was to investigate the activity of the selective MEK1/2 inhibitor TAK-733 in both melanoma cell lines and patient-derived melanoma xenograft models. In vitro cell proliferation assays using the sulforhodamine B assay were conducted to determine TAK-733 potency and melanoma responsiveness. In vivo murine modeling with eleven patient-derived melanoma explants evaluated daily dosing of TAK-733 at 25 or 10 mg/kg. Immunoblotting was performed to evaluate on-target activity and downstream inhibition by TAK-733 in both in vitro and in vivo studies. TAK-733 demonstrated broad activity in most melanoma cell lines with relative resistance observed at IC50 > 0.1 µmol/L in vitro. TAK-733 also exhibited activity in 10 out of 11 patient-derived explants with tumor growth inhibition ranging from 0% to 100% (P < 0.001-0.03). Interestingly, BRAF(V600E) and NRAS mutational status did not correlate with responsiveness to TAK-733. Pharmacodynamically, pERK was suppressed in sensitive cell lines and tumor explants, confirming TAK-733-mediated inhibition of MEK1/2, although the demonstration of similar effects in the relatively resistant cell lines and tumor explants suggests that escape pathways are contributing to melanoma survival and proliferation. These data demonstrate that TAK-733 exhibits robust tumor growth inhibition and regression against human melanoma cell lines and patient-derived xenograft models, suggesting that further clinical development in melanoma is of scientific interest. Particularly interesting is the activity in BRAF wild-type models, where current approved therapy such as vemurafenib has been reported not to be active.


Assuntos
Antineoplásicos/farmacologia , Melanoma/patologia , Inibidores de Proteínas Quinases/farmacologia , Piridonas/farmacologia , Pirimidinonas/farmacologia , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Humanos , Immunoblotting , Cinética , Camundongos Nus , Inibidores de Proteínas Quinases/farmacocinética , Piridonas/farmacocinética , Pirimidinonas/farmacocinética , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Clin Cancer Res ; 19(15): 4149-62, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23757356

RESUMO

PURPOSE: The mitogen-activated protein kinase (MAPK) pathway is a crucial regulator of cell proliferation, survival, and resistance to apoptosis. MEK inhibitors are being explored as a treatment option for patients with KRAS-mutant colorectal cancer who are not candidates for EGFR-directed therapies. Initial clinical results of MEK inhibitors have yielded limited single-agent activity in colorectal cancer, indicating that rational combination strategies are needed. EXPERIMENTAL DESIGN: In this study, we conducted unbiased gene set enrichment analysis and synthetic lethality screens with selumetinib, which identified the noncanonical Wnt/Ca++ signaling pathway as a potential mediator of resistance to the MEK1/2 inhibitor selumetinib. To test this, we used shRNA constructs against relevant WNT receptors and ligands resulting in increased responsiveness to selumetinib in colorectal cancer cell lines. Further, we evaluated the rational combination of selumetinib and WNT pathway modulators and showed synergistic antiproliferative effects in in vitro and in vivo models of colorectal cancer. RESULTS: Importantly, this combination not only showed tumor growth inhibition but also tumor regression in the more clinically relevant patient-derived tumor explant (PDTX) models of colorectal cancer. In mechanistic studies, we observed a trend toward increased markers of apoptosis in response to the combination of MEK and WntCa(++) inhibitors, which may explain the observed synergistic antitumor effects. CONCLUSIONS: These results strengthen the hypothesis that targeting both the MEK and Wnt pathways may be a clinically effective rational combination strategy for patients with metastatic colorectal cancer.


Assuntos
Benzimidazóis/administração & dosagem , Neoplasias Colorretais/tratamento farmacológico , Ciclosporina/administração & dosagem , Inibidores de Proteínas Quinases/administração & dosagem , Apoptose , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Humanos , MAP Quinase Quinase Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas p21(ras) , Transdução de Sinais/efeitos dos fármacos , Via de Sinalização Wnt/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas ras/genética
4.
J Clin Oncol ; 31(9): 1231-8, 2013 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-23358974

RESUMO

The ubiquitin proteasome system (UPS) regulates the ubiquitination, and thus degradation and turnover, of many proteins vital to cellular regulation and function. The UPS comprises a sequential series of enzymatic processes using four key enzyme families: E1 (ubiquitin-activating enzymes), E2 (ubiquitin-carrier proteins), E3 (ubiquitin-protein ligases), and E4 (ubiquitin chain assembly factors). Because the UPS is a crucial regulator of the cell cycle, and abnormal cell-cycle control can lead to oncogenesis, aberrancies within the UPS pathway can result in a malignant cellular phenotype and thus has become an attractive target for novel anticancer agents. This article will provide an overall review of the mechanics of the UPS, describe aberrancies leading to cancer, and give an overview of current drug therapies selectively targeting the UPS.


Assuntos
Antineoplásicos/farmacologia , Transformação Celular Neoplásica , Complexo de Endopeptidases do Proteassoma/fisiologia , Enzimas Ativadoras de Ubiquitina/fisiologia , Enzimas de Conjugação de Ubiquitina/fisiologia , Ubiquitina-Proteína Ligases/fisiologia , Antineoplásicos/uso terapêutico , Inibidor de Quinase Dependente de Ciclina p27/fisiologia , Proteínas de Ligação a DNA/fisiologia , Humanos , Masculino , Mutação , Proteínas Oncogênicas Virais/fisiologia , Neoplasias da Próstata/genética , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-mdm2/fisiologia , Proteína Supressora de Tumor p53/fisiologia , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Ubiquitina-Proteína Ligases/genética
5.
Pediatr Infect Dis J ; 30(12): 1105-7, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21844829

RESUMO

Ethanol locks have been used to treat catheter infections and to decrease the rate at which they occur. Catheter-related infections caused by Candida spp. are especially difficult to manage medically and usually require catheter removal. We report 3 consecutive patients whose catheter infections caused by Candida were successfully treated with a combination of ethanol lock therapy and systemic antifungals.


Assuntos
Candidemia/prevenção & controle , Infecções Relacionadas a Cateter/prevenção & controle , Cateterismo/métodos , Cateteres de Demora/microbiologia , Etanol/uso terapêutico , Candida albicans/efeitos dos fármacos , Candida albicans/isolamento & purificação , Pré-Escolar , Etanol/farmacologia , Feminino , Humanos , Lactente , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...